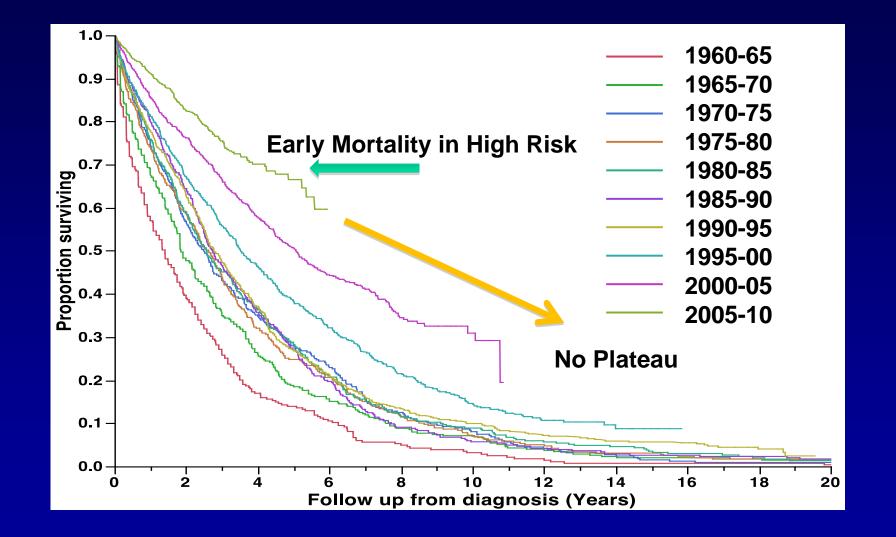
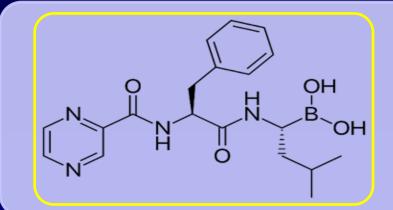


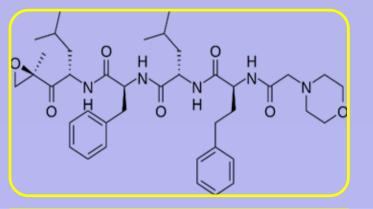
Proteasome Inhibitors (PIs) in MM: New agents

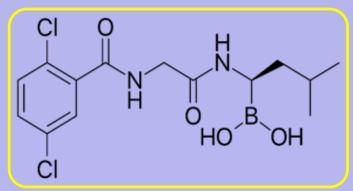
Paul Richardson, MD RJ Corman Professor of Medicine Dana-Farber Cancer Institute Harvard Medical School Boston, MA


> Bologna, Italy September 2018

Multimodality targeting of MM in the context of the BM microenvironment


G. Bianchi, PG. Richardson and KC. Anderson, Blood 2015; 126:300-310.


Multiple Myeloma Survival Improving With New Drugs: But All Pts Still Relapse After IMiD and PI Failure

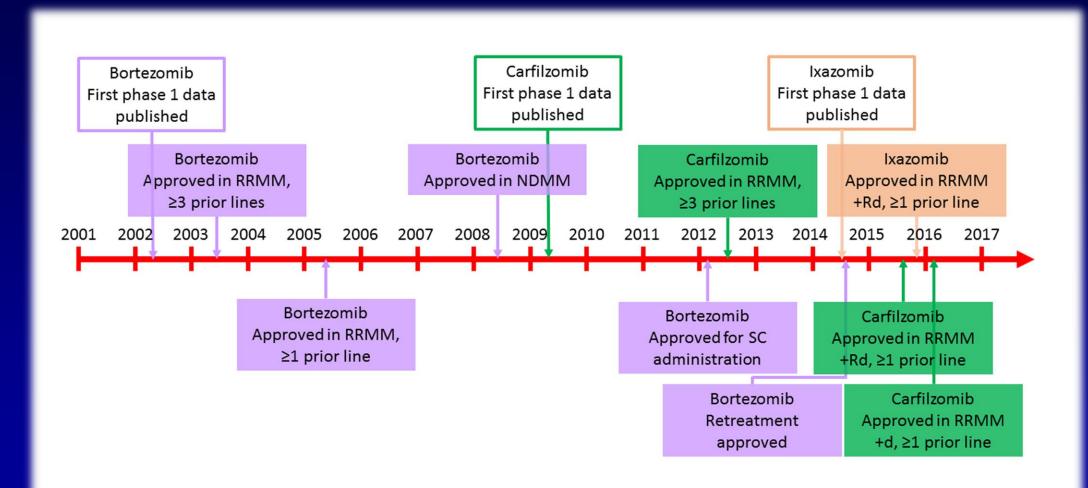


Adapted from Kumar et al Leukemia 2014

Three FDA/EMA-approved PIs

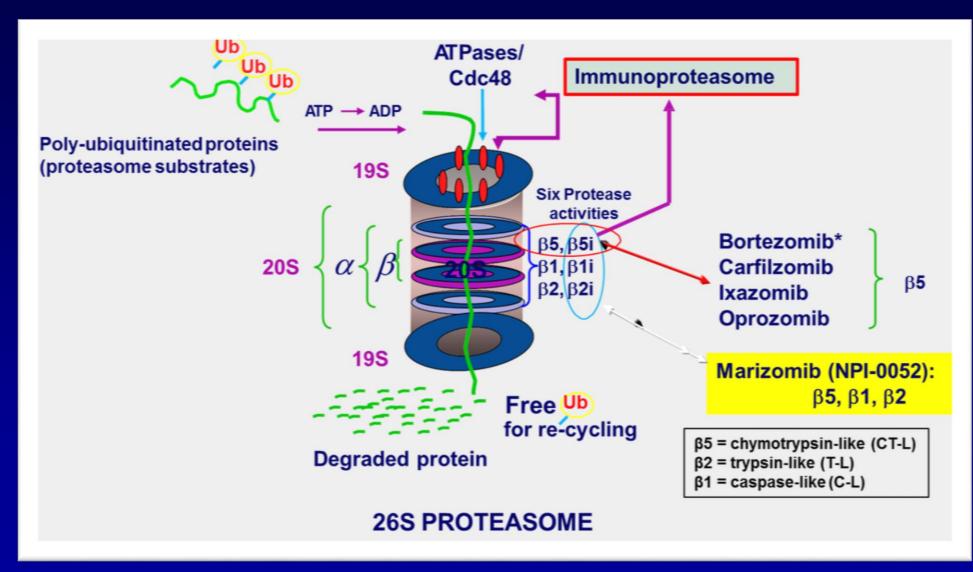
Bortezomib

- Boronate peptide
- Reversible binding
- IV or SC
- Approved for treatment of MM

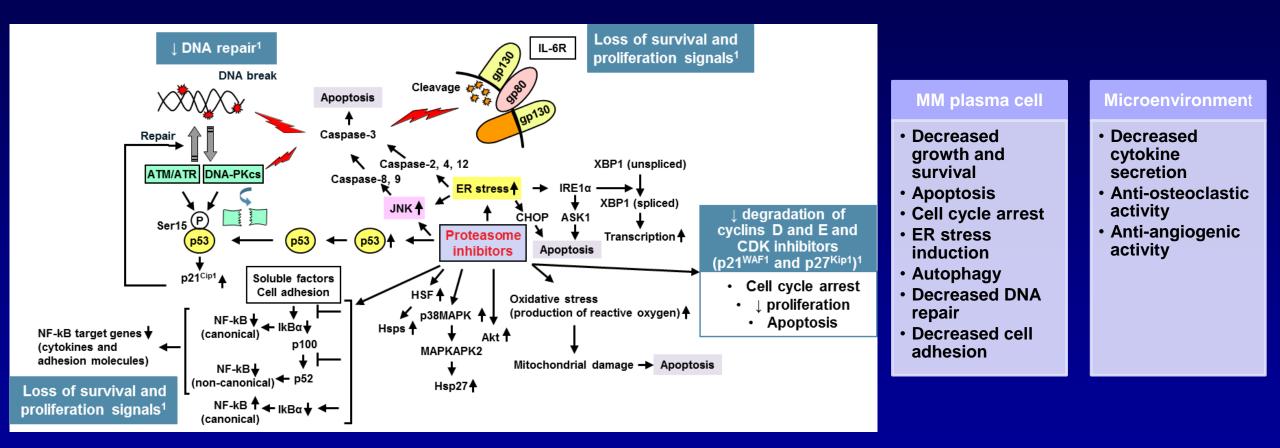

Carfilzomib

- Epoxyketone
- Irreversible binding
- IV
- Approved with Rd or Dex for treatment of MM after 1–3 prior lines

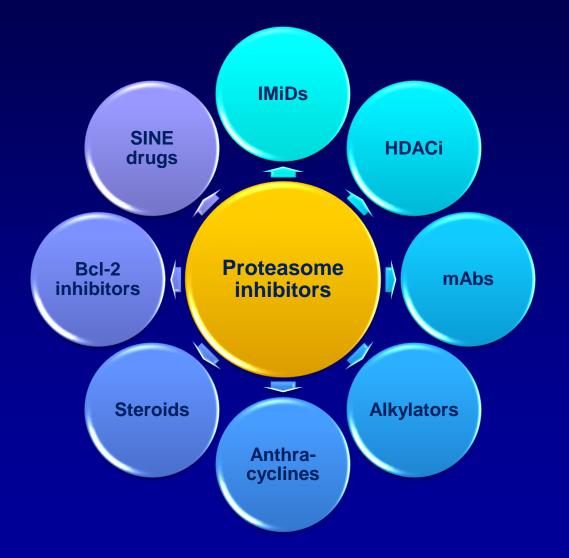
Ixazomib


- Boronate peptide
- Rapidly reversible binding
- Oral
- Approved with Rd for treatment of MM after ≥1 prior line

Timeline of PI approvals in MM


1. Gandolfi S, et al. Cancer Metastasis Rev 2017;36(4):561-84.

The MOA of Proteasome Inhibition


1. Lawasut P, et al. Curr Hematol Malig Rep 2012;7(4):258-66.

Biologic consequences of proteasome inhibition; downstream effects similar across all PIs

Hideshima T & Anderson KC. Semin Hematol 2012;49(3):223–27.
 Gandolfi S, et al. Cancer Metastasis Rev 2017;36:561–84.
 Hideshima T, et al. Nat Rev Cancer 2007;7:585–98.

Pls: a therapeutic backbone

- Multiple biologic consequences
 of proteasome inhibition
- Synergistic/additive activity with other chemotherapeutic and targeted agents
- Pls are key combination partners across the treatment algorithm

1. Gandolfi S, et al. Cancer Metastasis Rev 2017;36:561-84.

Established PI-based treatment options: US NCCN recommended regimens

Primary therapy for transplant candidates

- Preferred
- VRd
- VCd
- Other recommended
 - PAD
 - KRd
 - IRd
- Useful in certain circumstances
 - Vd
 - VTd

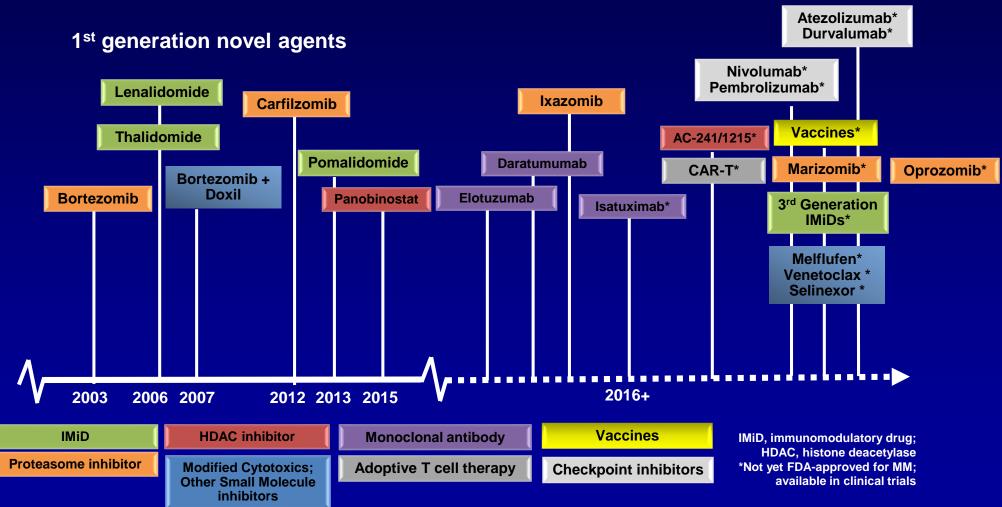
Primary therapy for non-transplant candidates

Preferred

- VRd
- VCd
- Dara-VMP
- Other recommended
- KRd
- KCd
- IRd
- Useful in certain circumstances
- Vd

Therapy for previously treated MM: preferred

• VRd


- Kd
- KRd
- Dara-Vd
- IRd

Therapy for previously treated MM: other

- Benda-Vd
- VDd
- VCd
- KCd
- Vd
- Elo-Vd
- Id
- Pano-Vd
- Pano-K
- Pom-Vd
- Pom-Kd
- Pom-Id

A, doxorubicin; Benda, bendamustine; C, cyclophosphamide; d/D, dexamethasone (except VDd – bortezomib, Doxil, dex); Elo, elotuzumab; Dara, daratumumab; I, ixazomib; K, carfilzomib; M, melphalan; P, prednisone; Pano, panobinostat; Pom, pomalidomide; R, lenalidomide; T, thalidomide; V, bortezomib

Continuing evolution of MM treatment: selected new classes and targets 2016-2018

2nd generation novel therapies/immunotherapy

Two novel investigational PIs

Marizomib¹⁻³

 Marine-derived β-lactone compound (non-peptide bicyclic γ-lactam–β-lactone)

Irreversible binding; differing proteasome inhibition profile from bortezomib
IV, Oral

• Under investigation as treatment for RR MM, CNS-MM

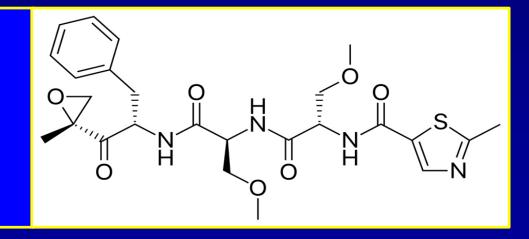
Oprozomib²⁻⁴

. Н

, OΗ

 \mathbf{M}

• Peptide epoxyketone

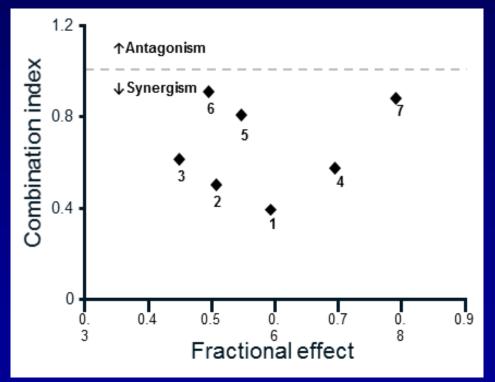

С

- Irreversible binding
- Oral

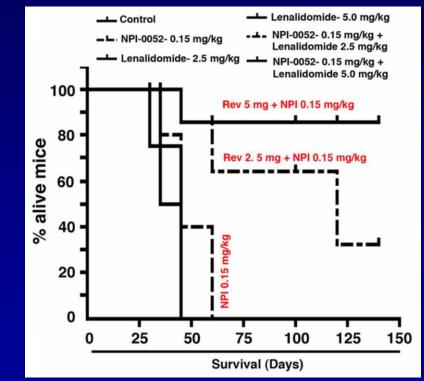
 \mathbf{O}

Ο

• Under investigation as treatment for RR MM


1. Chauhan D, et al. Cancer Cell 2005;8(5):407–19. 2. Dick L, Fleming P. Drug Discov Today 2010;15(5-6):243–9. 3. Gandolfi S, et al. Cancer Metastasis Rev 2017;36(4):561–84. 4. Chauhan D, et al. Blood 2010;116(23):4906–15.

Proteasome Inhibitors (PIs) in MM: New agents


Marizomib

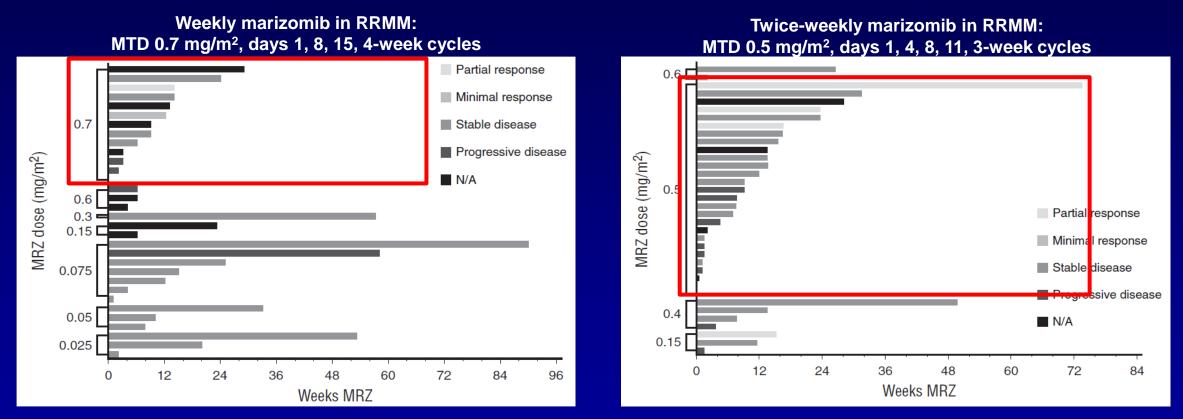
Marizomib: preclinical synergy with immunomodulators

Marizomib + pomalidomide: synergistic anti-MM activity in MM1S cells¹

Marizomib + lenalidomide: significantly increased survival in mouse xenograft model²

1. Das DS, et al. Br J Haematol 2015;171:798–812. 2. Chauhan D, et al. Blood 2010;115(4):834–45.

Marizomib in MM: Clinical trial data


Study	Regimen	Setting	Response rates	Outcomes
NPI-0052-101 ¹ Phase 1	Single-agent marizomib / marizomib-dex	RRMM (median 4–6 prior regimens; N=68)	CBR: 9% ORR: 7%	NR
NPI-0052-102 ² Phase 1	Single-agent marizomib	Advanced malignancies including RRMM (median 7 prior regimens; N=35) 19% btz-refractory	CBR: 30% ORR: 15% VGPR: 4%	NR
NPI-0052-107 ³ Phase 1	Marizomib- pomalidomide- dexamethasone	RRMM (median 4 prior regimens; N=38) 61% btz-refractory; 29% cfz-refractory 84% len-refractory; 53% btz/len- refractory; 21% triple refractory	CBR: 64% ORR: 53% VGPR: 6%	PFS: 4.0 mos OS: 13.6 mos

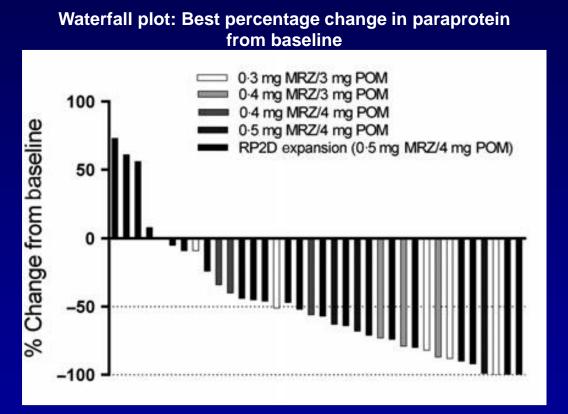
1. Richardson PG, et al. Blood 2016;127(22):2693–700.

2. Harrison SJ, et al. Clin Cancer Res 2016;22(18):4559-66.

3. Spencer A, et al. Br J Haematol 2018;180(1):41-51.

Phase I NPI-0052-101 study¹ Single-agent marizomib: Clinical responses

- 1 PR at weekly MTD, 1 PR with twice-weekly 0.15 mg/m², 3 PRs at twice-weekly MTD
- These responses were in patients who had received prior bortezomib, lenalidomide, and/or thalidomide
- Twice-weekly MTD of 0.5 mg/m² determined as regimen of choice for further development

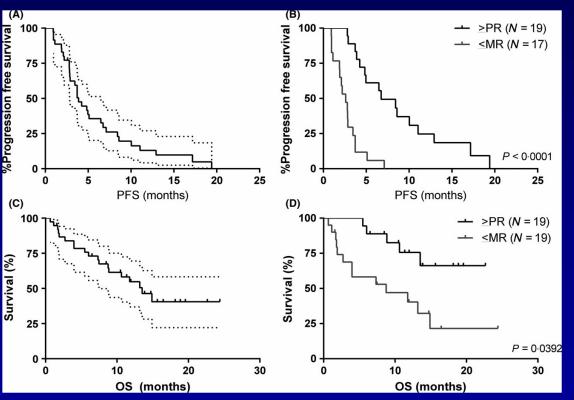

1. Richardson PG, et al. Blood 2016;127(22):2693-700.

Phase I NPI-0052-102 study¹ Single-agent marizomib: Clinical responses in MM

- Twice-weekly schedule
 - 44 patients treated in 6 dose cohorts
 - 10 patients treated at RP2D 0.5 mg/m² administered over 2 hours
 - 35 RRMM patients treated on twice-weekly schedule
- 27 evaluable RRMM patients
 - 4 objective responses
 - 1 VGPR at 0.5 mg/m² (10-min infusion)
 - 3 PRs at 0.5 (mg/m²) (10-min infusion), 0.6 mg/m² (2-hr infusion), and 0.5 mg/m² (2-hr infusion)
 - Median DOR: 27 weeks
 - Median PFS (RP2D cohort, n=10): 20.4 weeks

Phase Ib NPI-0052-107 study¹ Marizomib+pomalidomide+dex: Clinical responses

Honths MRZ


Swimmer plot showing responses with time on marizomib

- MTD: twice-weekly marizomib 0.5 mg/m², pomalidomide 4 mg
- 2 VGPRs, 17 PRs (including 5 maintained for ≥10 months); 31/36 patients had M-protein reductions
- Median DOR: 7.5 months
- 1. Spencer A, et al. Br J Haematol 2018;180(1):41-51.

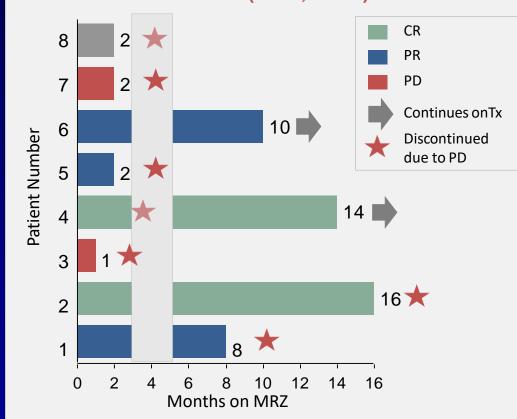
Phase Ib NPI-0052-107 study¹ Marizomib+pomalidomide+dex: Clinical responses

Subgroup	Ν	ORR	CBR
All	36	53%	64%
High-risk cytogenetics	10	50%	70%
Standard-risk cytogenetics	18	56%	61%
Prior lenalidomide/bortezomib	36	53%	64%
Prior carfilzomib	11	82%	91%
Refractory to lenalidomide	30	50%	63%
Refractory to bortezomib	21	57%	62%
Refractory to carfilzomib	10	80%	90%
Refractory to lenalidomide/bortezomib	18	56%	67%
Refractory to lenalidomide/bortezomib/carfilzomib	7	71%	87%
Refractory to lenalidomide in last regimen	15	47%	67%
Refractory to bortezomib in last regimen	7	43%	57%
Refractory to carfilzomib in last regimen	7	86%	86%

Phase lb NPI-0052-107 study¹ Marizomib+pomalidomide+dex: outcomes

PFS (top) and OS (bottom) in all patients (left) and by response to marizomib+pomalidomide+dex (right)

- Median PFS: 4.0 months
 - 6.7 vs 2.6 months in patients achieving ≥PR vs ≤MR
 - 3.8 months in double-refractory (lenalidomide/bortezomib) patients
- Median OS: 13.6 months
 - Significantly prolonged in patients achieving ≥PR vs ≤MR
 - 13.6 months in double-refractory patients
- Median PFS/OS similar to overall population in triple-refractory (lenalidomide/bortezomib/carfilzomib) patients


Marizomib: ongoing studies

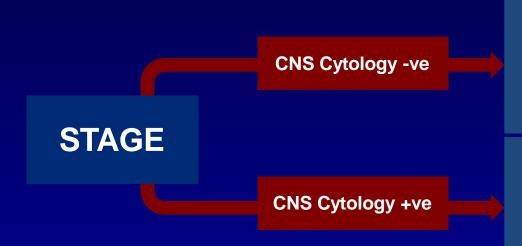
Study	NCT	Regimens	Patients	Primary endpoint	Date of primary data availability
EORTC-BTG-1709 Phase 3	NCT03345095	Marizomib + temozolomide + RT	Newly diagnosed glioblastoma	OS	July 2022
MRZ-108 Phase 1	NCT02330562	Marizomib + bevacizumab	Malignant glioma / GBM	MTD / activity	February 2019
MRZ-112 Phase 1	NCT02903069	Marizomib + temozolomide + RT	Newly diagnosed brain cancer	MTD / AEs	June 2019

- Currently studies in RR MM/CNS MM are in development (ClinicalTrials.gov, Sept 2018)
- Clinical experience in glioblastoma and CNS-MM suggests marizomib has positive impact on these CNS malignancies – hence the focus of ongoing studies

Marizomib: Current Results in CNS-MM

- Initial experience in 2 patients with safety shown, and responses reported ¹
- 8 patients treated under single patient compassionate use protocol with for CNS-MM
- Marizomib well tolerated
 - No CNS adverse events reported despite 10 min infusion and dose similar to GBM
- Marizomib is showing promising activity
 - 5-6 of 8 patients ≥PR
 - 4 of 8 patients: survival > 4 months which exceeds the median survival for this disease
 - 2 of 8 patients on study over 1 year with another one patient still on treatment at 10 months (10/17)
- Treatment:
 - 3 started with marizomib + dex; 1 pomalidomide, 1 daratumumab added
 - 5 started with marizomib+pomalidomide (lenalidomide)+dex

IMWG Response Assessment of Systemic Disease


ORR = 5/7 (3PRs, 2 CRs)

- All patients had systemic disease with CNS involvement
- MRZ resulting in systemic responses as per IMWG response criteria in addition to neurological improvements

- Formal single-arm phase 2 study, after "run in" for RR MM
- > Based on initial findings of exploratory trials
- Clear eligibility criteria
- Single agent, combination, IT administration, XRT ?
- **Consistent disease evaluation criteria**
- Include relevant Patient Outcome evaluation
- **Aim to start Q3-4 2019**

Evaluating marizomib in CNS-MM: study design (in development)

Marizomib 0.7mg/m² days 1, 4, 8, 11 Pomalidomide 4mg od Dexamethasone 40mg days 1, 4, 8, 11

21 day cycles

Marizomib 0.7mg/m² days 1, 4, 8, 11 Pomalidomide 4mg od Dexamethasone 40mg days 1, 4, 8, 11

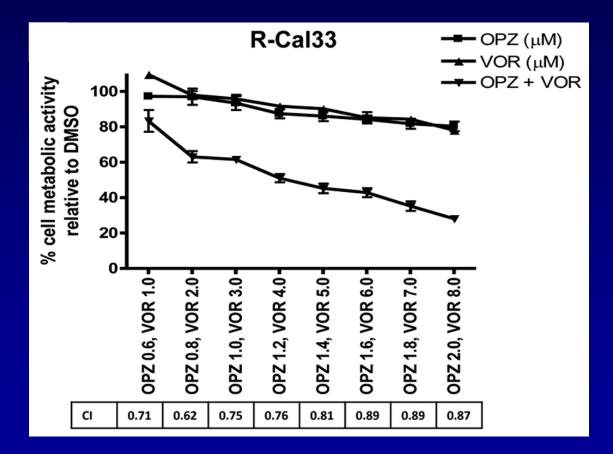
21 day cycles

╋

IT Triple Therapy Steroid, MTX, ARA-C Bi-weekly until CSF clears then weekly for 4 weeks

Treat until progression.

Dose and Schedule under evaluation – "Run In" phase in RR MM pts will inform this.


Role of other agents?

Proteasome Inhibitors (PIs) in MM: New agents

Oprozomib

Oprozomib: preclinical synergies

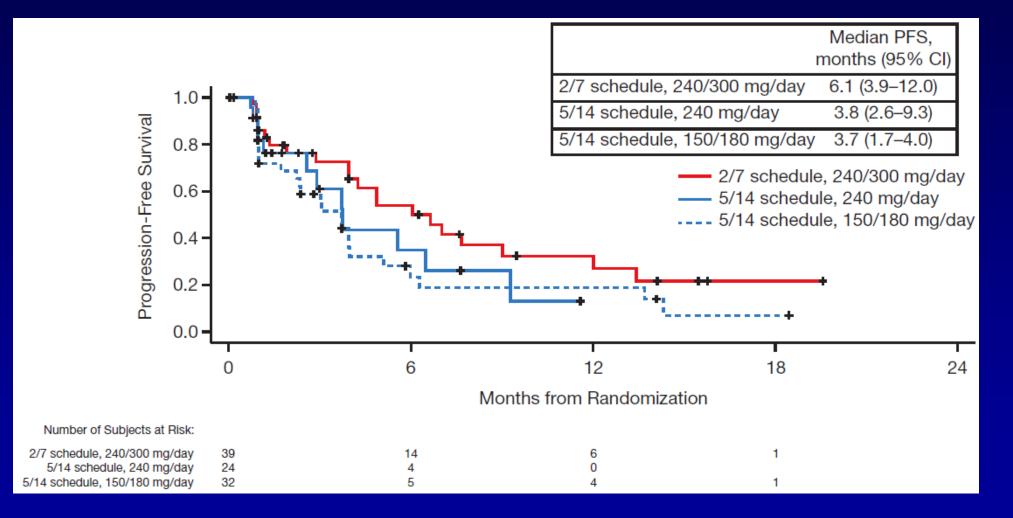
- Enhanced anti-MM activity of:¹
 - Bortezomib
 - Lenalidomide
 - Dexamethasone
 - Pan-HDACi
- Anti-MM synergy with pomalidomide + dexamethasone²
- Synergy with vorinostat (HDACi) in carfilzomib-resistant HNSCC cells (right)³

Chauhan D, et al. Blood 2010;116(23):4906–15.
 Sanchez E, et al. Leuk Res 2017;57(June):45–54.
 Zang Y, et al. Cancer Biol Ther 2014;15(9):1142–52.

Oprozomib in MM: Clinical trial data

Study	Regimen	Setting	Response rates	Outcomes
Ghobrial et al ¹ Phase 1b/2	Single-agent oprozomib + dex	RRMM (median 3–5 prior regimens; phase 2, N=102) 62-71% btz-refractory; 33% cfz- refractory; 74-78% len-refractory; 44-46% pom-refractory	Phase 2: CBR: 31–51% ORR: 25–41% ≥VGPR: 9–13%	PFS: 3.7–6.1 mos
Shah et al ² Phase 1b	Oprozomib- pomalidomide- dex	RRMM (median 8 prior regimens; N=21) 71% btz-refractory; 38% cfz-refractory 86% IMiD-refractory	CBR: 57% ORR: 57% ≥VGPR: 24%	NR

Ghobrial IM, et al. manuscript submitted.
 Shah J, et al. Blood 2015;126(23):378.


Phase I/II 2011-001 study¹ Single-agent oprozomib: responses

Outcome	2/7 schedule, 240/300 mg/day (n = 39)	5/14 schedule, 150/180 mg/day (n = 32)	5/14 schedule, 240 mg/day (n = 24)
ORR, n (%)	16 (41)	9 (28)	6 (25)
VGPR, n (%)	5 (13)	3 (9)	3 (13)
PR, n (%)	11 (28)	6 (19)	3 (13)
CBR, n (%)	20 (51)	10 (31)	8 (33)
Median DOR, months	10.2	12.5	5.6
	00		
Patients refractory to bortezomib, N	29	39	
ORR, n (%)	9 (31)	7 (18)	
CBR, n (%)	11 (38)	10 (26)	
Patients refractory to carfilzomib, N	14	21	
ORR, n (%)	2 (14)	2 (10)	
CBR, n (%)	3 (21)	2 (10)	

- 2/7 schedule: days 1, 2, 8, 9, 14-day cycles
- 5/14 schedule: days 1–5, 14-day cycles

1. Ghobrial IM, et al. manuscript submitted.

Phase I/II 2011-001 study¹ Single-agent oprozomib: PFS

1. Ghobrial IM, et al. manuscript submitted.

Oprozomib in MM: ongoing studies

Study	NCT	Regimens	Patients	Primary endpoint	Date of primary data availability
OPZ003 Phase 1/2	NCT01881789	Oprozomib-cyclo/len- dex	NDMM	MTD, AEs, ORR	February 2019
2012-001 Phase 1b/2	NCT01832727	Oprozomib-dex	RRMM, 1–5 prior therapies	MTD, safety, ORR	February 2019
OPZ007 Phase 1b	NCT01999335	Oprozomib-pom-dex	RRMM, ≥2 prior therapies	MTD, AEs, PFS	February 2019
INTREPID-1 Phase 1b	NCT02939183	Oprozomib-(pom)-dex	RRMM, ≥2 prior therapies	MTD of different OPZ formulations	April 2020

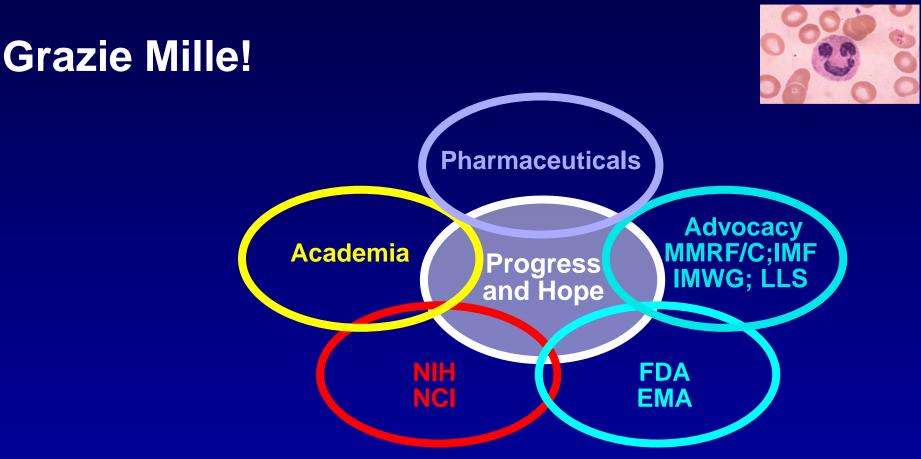
- INTREPID-1 is studying two new formulations of oprozomib designed to improve GI tolerability: immediate-release formulation and gastro-retentive formulation
- Prior studies utilized modified-release tablet that is not being continued

Which PI?

Two investigational PIs: different safety considerations

PI	Key toxicities	•	S
Marizomib ¹	Drug-related AEs: Fatigue 47%, headache 43%, nausea 38%, diarrhea 28%, dizziness 27%, vomiting 25% (all grades)		ef in
	CNS toxicities ~ manageable Limited PN, minimal cardiac AEs, Limited heme toxicity		•
Oprozomib ²	Common grade ≥3 AEs: Diarrhea 12–33%, anemia 9–30%, fatigue	•	M W
	9–20%, thrombocytopenia 3–33%, Nausea/vomiting (40%) Discontinuations due to AEs in 12–44% Dose-limiting GI hemorrhage	•	G op

Some of the potential class effects of PIs seen with investigational agents


- Hematologic toxicity, especially thrombocytopenia (oprozomib)
- GI toxicities (both agents, especially oprozomib)
- Limited CV toxicities
- Minimal PN and heme tox seen with marizomib
- GI toxicity dose-limiting with oprozomib
 - Development ongoing with novel formulations to overcome GI issues

^{1.} Richardson PG, et al. Blood 2016;127(22):2693–700. 2. Ghobrial IM, et al. manuscript submitted.

Conclusions and Future Directions

- Three approved PIs form the backbone of the NDMM and RRMM treatment algorithm (Bz, CFLz, IXA)
 - Currently utilized in multiple combinations and settings
 - Ongoing phase 3 studies potentially expanding roles of carfilzomib and ixazomib in the future
- Ongoing phase 3 studies evaluating novel PI-based combinations
 - Further broadening range of PI-based options for MM over the next 5 years
 - Particularly with monoclonal antibodies (e.g. Dara, Isatuximab, Elo, MOR 202, GSK916)
 - Other novel investigational agents (e.g. venetoclax, selinexor)
- Next-generation PIs in development
 - Marizomib unique MoA, highly active in combination, potential utility in CNS-MM
 - Oprozomib activity noted, ongoing development in RR MM with novel formulations to improve tolerability

Ongoing MM collaborative model for rapid translation from bench to bedside

24 new FDA-approved drugs/combos/indications in last 14 yrs

F

oing hematologists conquer blood diseases worldwig

